
AERON REST API
Version 1.0

REST API v1.0

AERON REST API can be used to pull the data of Aeron’s data loggers. The communication
requires a valid token for authentication of the user. This token should be present in the header
of each request to the server. This token will be acquired from an API given below.

1. API to acquire access token
This API is used to authenticate the user and to receive the access token.

1.1. EndPoint
https://getiotservice.aeronsystems.com:9007/v1.0/gettoken

1.2. Method
The request should be through the POST method.

1.3. Header
The header should be:

Host: getiotservice.aeronsystems.com:9007
Method: POST
Content Body: username=<userLoginId>&password=<userPassword>&grant_type=password
Content-Type : application/x-www-form-urlencoded
Authorization : Basic + baseEncoded(<clientName> : <clientSecret>)
Accept : application/json

Note: <clientName> and <clientSecret> will be given by the Aeron team after the confirmation
of PO for API.
<userLoginId> and <userPassword> will be acquired on registration to Aeron portal. The
Aeron team will register the user.

1.4. Response Json
The JSON will be provided with an access token.
The response JSON would be:
HTTP STATUS 200 OK

1

https://iotservice.aeronsystems.com:9007/v1.0/gettoken
http://iotservice.aeronsystems.com/

{
"access_token": "xxxx",
"token_type": "bearer",
"refresh_token": "xxxx",
"expires_in": xxxx,
"scope": "read write"

}

Table 1.0: JSON data fields

Name Data type Description

access_token String Used to request data API

token_type String Bearer

refresh_token String Used to acquire access token if current token
expires

expires_in Decimal Period of time when the access token will be
valid in minutes

scope String Scope of the user

1.4.1. Example JSON

{
"access_token": "b654b85b-6c5a-45e9-a17c-76346c6113ad",
"token_type": "bearer",
"refresh_token": "8d3174bd-a98d-4f25-ba7a-e212c3a726c3",
"expires_in": 43199,
"scope": "read write"

}

2

2. API to acquire new access token
This API is used to receive a new access token if the current access token expires.

2.1. EndPoint
https://getiotservice.aeronsystems.com:9007/v1.0/gettoken

2.2. Method
The request should be through the POST method.

2.3. Header
The header should be like this:

Host: getiotservice.aeronsystems.com:9007
Method: POST
Content Body: client_secret=<clientSecret>&client_id=<clientName>&refresh_token=<user's
refresh token>&grant_type=<refresh_token>
Content-Type : application/x-www-form-urlencoded
Authorization : Basic + baseEncoded(<clientName> : <clientSecret>)
Accept : application/json

2.4. Response Json
The JSON will be provided with an access token.
The response json would be :
HTTP STATUS 200 OK

{
"access_token": "xxxx",
"token_type": "bearer",
"refresh_token": "xxxx",
"expires_in": xxxx,
"scope": "read write"

}

2.4.1. Example JSON

{
"access_token": "b654b85b-6c5a-45e9-a17c-76346c6113ad",
"token_type": "bearer",
"refresh_token": "8d3174bd-a98d-4f25-ba7a-e212c3a726c3",
"expires_in": 43199,
"scope": "read write"

}

3

https://iotservice.aeronsystems.com:9007/v1.0/gettoken
http://iotservice.aeronsystems.com/

3. API to get latest data of a datalogger
This API is used to fetch recent recorded parameters value of a data logger. A data
logger can have multiple sensors installed to record different environmental parameters.
Each data logger will be identified by its USN.

3.1. EndPoint
https://getiotservice.aeronsystems.com:9007/v1.0/getdata?usn=<device_usn>

3.2. Method
The request should be through the GET method.

3.3. Header
The request should contain a valid token in the Authorization header. The header format
should be:

Host: getiotservice.aeronsystems.com:9007
Method: GET
URL Parameter: usn
Authorization: Bearer <token>
Accept: application/json

Note: For <token> refer section 1 and 2.

3.4. Response Json
The json will be provided with a data object of a specific data logger installed at a station.
The response json would be :
HTTP STATUS 200 OK

{
"params": [{

"caption": "xxxx",
"value": xxxx,
"unit": "xxx"

},
{

"caption": "xxxx",
"value": xxxx,
"unit": "xxx"

},
...

],

4

http://iotservice.aeronsystems.com/
http://iotservice.aeronsystems.com/

"health": {
"charging": x,
"battery": x,
"supply": x,
"network": x,
"network_reg": x,
"gpsfix": x

},
"location": {

"latitude": x,
"longitude": x,
"altitude": x

},
"timestamp": {

"date": "yyyy-m-d",
"time": "h:m:s"

}
}

Table 2.0: JSON data fields

Name Data Type Description

caption String Name of the parameter.

value Decimal Value of the parameter at mentioned
timestamp.

unit String Unit in which device is recording the
parameter.

charging Decimal Charging condition 0/1. (Note: Not
applicable for XTM type devices)

battery
Decimal Battery of the device on the scale of 0 to 5.

(Note: Not applicable for XTM type devices)

supply Decimal Supply voltage to the datalogger on the
scale of 0 to 14. (Note: Not applicable for
XTM type of devices)

network Decimal Network strength of the datalogger on the
scale of 0 to 5.

network_reg Decimal 1 if a registered SIM is inserted. 0 if the
registered network is not detected.

gpsfix Decimal 1 indicates if GPS signal is received else 0

5

latitude Decimal Latitude of data logger position in decimal
degrees format.

longitude Decimal Longitude of data logger position in a
decimal degrees format.

altitude Decimal Altitude of data logger in meters.

date String Data recorded date in YYYY-M-D

time String Data recorded time in h:m:s

3.4.1. Example JSON

{
"params": [{

"caption": "PM1",
"value": 7.23,
"unit": "ug/m3"

},
{

"caption": "CO",
"value": 0.27,
"unit": "mg/m3"

},
...

],
"health": {

"charging": 0,
"battery": 3,
"supply": 9,
"network": 4,
"network_reg": 1,
"gpsfix": 1

},
"location": {

"latitude": 18.5789,
"longitude": 73.7707,
"altitude": 550

},
"timestamp": {

"date": "2021-7-13",
"time": "11:3:59"

}
}

6

4. API to get data by date of a datalogger
This API is used to fetch parameters value of a datalogger recorded at a given date.

4.1. EndPoint
https://getiotservice.aeronsystems.com:9007/v1.0/getdatabydate?usn=<device_usn>&dat
e=<date_value>

4.2. Method
The request should be through the GET method.

4.3. Header
The request should contain a valid token in the Authorization header. The header format
should be:

Host: getiotservice.aeronsystems.com:9007
Method: GET
URL Parameter: usn, date (YYYY-MM-DD)
Authorization: Bearer <token>
Accept: application/json

4.4. Response Json
The json will be provided with an array of data objects of a specific data logger installed at
a station.
The response json would be :
HTTP STATUS 200 OK

[{
"params": [{

"caption": "xxxx",
"value": xxxx,
"unit": "xxx"

},
{

"caption": "xxxx",
"value": xxxx,
"unit": "xxx"

},
...

],
"health": {

7

http://iotservice.aeronsystems.com/
http://iotservice.aeronsystems.com/
http://iotservice.aeronsystems.com/

"charging": x,
"battery": x,
"supply": x,
"network": x,
"network_reg": x,
"gpsfix": x

},
"location": {

"latitude": x,
"longitude": x,
"altitude": x

},
"timestamp": {

"date": "yyyy-m-d",
"time": "h:m:s"

}
},
{
…
}]

4.4.1. Example JSON

[{
"params": [{

"caption": "PM1",
"value": 7.23,
"unit": "ug/m3"

},
{

"caption": "CO",
"value": 0.27,
"unit": "mg/m3"

},
...

],
"health": {

"charging": 0,
"battery": 3,
"supply": 9,
"network": 4,
"network_reg": 1,
"gpsfix": 1

},

8

"location": {
"latitude": 18.5789,
"longitude": 73.7707,
"altitude": 550

},
"timestamp": {

"date": "2021-7-13",
"time": "11:3:59"

}
},
{

"params": [{
"caption": "PM1",
"value": 10.23,
"unit": "ug/m3"

},
{

"caption": "CO",
"value": 0.25,
"unit": "mg/m3"

},
...

],
"health": {

"charging": 1,
"battery": 2,
"supply": 9,
"network": 3,
"network_reg": 1,
"gpsfix": 1

},
"location": {

"latitude": 18.5789,
"longitude": 73.7707,
"altitude": 550

},
"timestamp": {

"date": "2021-7-13",
"time": "11:4:0"

}
},
...
]

Note: These APIs are applicable for different types of data loggers.

9

1. What is the connectivity status of each of the eight

existing weather stations? are they online and

providing correct readings to their clouds?

All existing weather stations are
in a good condition and
operating properly

2. Could you please provide screen shoots and API

documentation reference for the dashboard of the

existing Aeron weather stations?

Attached the API
documentation reference of
Aeron weather stations

3. For the new 11 weather stations, is it required as part

of the installation to provide a 10 m x10 m fence?

No, it is not required to provide
a 10x10 m fence

4. Is the sim card monthly bill covered by NARC or the

contractor and how many years should the offer

cover?

The contractor is responsible
for the station’s operation and
functionality during the entire
project period, furthermore,
the contractor is obliged to
operate the system for one
calendar year from the date of
handing over as stated in the
tender document (3.7 Bid
Conditions). Noting that the
contractor shall exclude the 5
Aeron Weather stations
monthly/annual fees.

The contractor is obliged to
fulfil the provided requirements
specified in the tender
document, as stated under
section 3.4 Wherever such
modifications are suggested, in
his technical proposal the
future contractor/supplier shall
clearly bring out the benefits
that may accrue by way of
these modifications of the
specific parameters.

It is recommended to provide
the separate sensors solution
for operation and maintenance
purposes.

General reporting requirements
considering the necessary
calculations as specified in the
tender document under section
3.5. The software solution shall
be capable to produce reports
based on the client
requirements and need

The contractor shall restrict to
the provided specification.

موعد تسليم العطاء كما هو في الاعلان
 ولا يوجد اي تغيير.

